Sunday, 9 August 2015

Count all the possible paths from top left to bottom right of a M*N matrix with the constraints that from each cell you can either move only to right or down.

Following program counts all the possible paths from top left to bottom right of a M*N matrix with the constraints that from each cell you can either move only to right or down.


/**
 * @author vikky.agrawal
 *
 */
public class RightDownPaths {

  int[][] arr;
  int length;

  RightDownPaths() {
    this.length = 4;
    arr = new int[length][length];
  }

  /**
   * @param args
   */
  public static void main(String[] args) {
    new RightDownPaths().operate();

  }

  public void operate() {
    this.calculate(arr);
  }

  public void calculate(int[][] arr) {

    System.out.println("initial array :");
    printArray(arr);

    int length_ = length - 1;

    arr[length_][length_] = 0;

    // Initialize last row and column with 1.
    for (int k = 0; k < length; k++) {
      arr[k][length_] = 1;
      arr[length_][k] = 1;
    }

    //Building array from bottom to top
    for (int row = length_ - 1; row >= 0; row--) {
      for (int column = length_ - 1; column >= 0; column--) {
        arr[row][column] = arr[row][column + 1] + arr[row + 1][column];
        //Total paths =   paths(right)    +   paths(down)
      }
    }
    System.out.println("Array after processing");
    printArray(arr);

    System.out
        .println("Total number of paths going right/down from [0,0] is = "
            + arr[0][0]);

  }

  public void printArray(int[][] arr) {
    int length_ = length;

    for (int row = 0; row < length_; row++) {
      for (int column = 0; column < length_; column++) {
        System.out.print(arr[row][column] + " ");
      }
      System.out.println(" ");
    }
  }

}

No comments:

Post a Comment